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ABSTRACT 

This   paper   considers   the  waiting-time   of a   driver   on a secondary 

road who wishes to  enter   or   cross a primary traffic  stream,   given 

that he   will   do   so   only  when  the   spacing   to   the   next  vehicle   is at 

least as great as some   fixed  critical  gap.    The initial waiting-time 

distribution    and   its    first   two   moments   are   obtained   under    the 

assumption  of  arbitrary   starting-up  and   headway   distributions   of 

the   primary   traffic   stream.     Under   the   assumption  that  only   one 

car may enter the   inter section per gap,   the   distribution   of succes- 

sive   waiting times   (the inter-gap distribution)   and its moments are 

obtained.     The   counting   distribution  of  the   passing   of gaps is   then 

used  to   describe   the   numbers   of   cars   which  leave   the   secondary 

road    during   a   fixed    interval   of   time.      Various    asymptotic   and 

limiting results are demonstrated,   together with the special results 

obtained when the   traffic   is   Poisson.    The necessary modifications 
for   other   gap   criteria   are   also   indicated. 



WAITING FOR A GAP IN TRAFFIC* 

Introduction 

The phenomenon of waiting to enter or cross a stream of traffic is a 

familiar one to all of us.    Instead of the usual queueing situation in which 

the delay is due to the completion of several service tasks of variable 

length,   the delay in entering a stream of traffic is caused by the successive 

passage of a varymg number of inter-car  spacings.   each of which is not 

large enough to allow entry.    Thus,   in this problem,   the main stochastic 

sequence (the stream of traffic) acts like a sieve,   allowing one to enter only 

when a spacing greater than or equal to some critical length appears.    This 

critical length depends upon the velocity of the main stream,   the reaction 

time of the waiting driver,   his acceleration ability,   the geometry of the 

intersection,   and so forth. 

In thls paper we  shall describe a sxmple recurrent event model which 

includes many of the features of the realists  situation.    In addition to 

deriving the first passage and recurrence  distributions of the waiting Urne, 

we  show the first two moments of these distributions and consider their 

asymptotic forms.    By deriving the counting distribution of 'large-enough- 

gaps,   the emptying of an infinite queue  on the secondary road is also des- 

cribed.    Explicit results are presented for the case of Poisson traffic,   and 

iixciu >Ji,iences.   Monterev.   California     Ar.T-41   1 R    I/i     in^n i_.i       , 

was an employee of Broa^ew Resea^^C^Uo^ti'on      At Thatf aUfh0r 

summary of the formulas presented here was^strxbuted [ 5^      sTv'er^ " 

has been added to demonstrate^e'efflct^? vl^al/e U ctuenl 8eCtl0n 



the necessary modifications for  other gap criteria are presented. 

Besuies its use ln describing delays of secondary traffic.,   this model has 

applications in scheduling traffic-actuated signal lights,   and in describing car 

passing and left-turn queueing phenomena.     Little   f7][8]    has applied related 

results to the location of retail stores near an intersection,   under the assump- 

tion that customers tend to prefer  stores with a minimum of delay in entering 

and leaving the parking area. 

The Model 

Cons^er the ideali.ed situation of Figure   1.   where  successive cars in a 

single lane of traffic pass the intersection at times r      r      r 

measured from the measurement origin    T - 0     Th» ivi        « ongin    T)- u.    The possible effect of upstream 
dynamics,   or the  "bluffing"  of the waiting driver,   are ignored. 

Time at which cars 
pass intersection 

C^^ 

Headway^   I 

cs-* 

Critical Gap,   T 

Measurement 
Origin 

T0=0 

d^ 

— ^ —^-r-'0 -H 

Figure   1   - -  Model D escription 
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We neglect the dimensions of passing cars and assume that the instants of 

arrival at the intersection are generated by a renewal process,   i. e. ,   the 

non-negative time spacings 

*()  = V0'    h  =T2-V    ^  = 73-T2 tn=    Tn+1-Tn  

are random variables from a known interevent distribution.     The time 

spacings tj,   t2,   ....   t,   . .      are referred to as headways in traffic studies. 

In order to retain generality about the measurement origin in the sequel, 

we shall assume that   t0   is a  sample from a starting-up distribution density 

d(t),   and that  t^,   t.,,   ....   t   ,   ...    are independent samples from a headway 

distribution density a(t). 

It is assumed that the driver on the secondary road will enter or cross 

the main stream of traffic if and only if the time interval,   until the next car 

passes,   is greater than or equal to some critical gap size,   T.    This critical 

gap is assumed to remain the same for every driver,   and not subject to 

change because of impatience. 

If a car  on the secondary road begins to wait at time zero,   then we define 

his waiting time,    w,    as 

w = 0 lf   ^ i*   T 

w = t0 
if   ^   -   T'   tl ^  T 

w =t0 + t1 if t0    <T,   tj <   T,   t2 >  T (1) 

W=    iV1 " '0   <T'tl<  T'   tZ<T'    •••   tn<T.   tn+1>   T. 

Thus,   the wait will be  zero if the driver is able to enter the intersection be- 

fore the first car arrives; if this initial headway is not large enough,   we 
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define his waiting time as the time until the beginning of the first gap.   i. e. . 

the beginning of the first inter-car headway not less than T. 

Simple models of this type were first considered by Garwood [ 3].  Raff 

[ 12],   and Tanner [ 13],   in order to derive the waiting-time distribution for 

Poisson traffic.    Among their results were the formulas of Equations (22). 

(23).  and (24).    Mayne [9] was the first person to consider arbitrary head- 

way distributions under the assumption of beginning measurements  "at 

random."   obtaining results which are equivalent to Equation (16),   and its 

associated moments. 

Since this paper was presented [ 5] .   Weiss and Maradudin [ 14]  hav« 

presented a generalization of this model,   in which a certain probability of 

entering the intersection is associated with each inter-vehicle headway.    The 

results obtained,   whUe more complicated,   permit a more realistic descrip- 

tion of driver acceptance criteria.    Results which are generalizations of (16), 

(36),   and (37),   together with their moments are obtained.     Weiss and 

Maradudin have also made a preliminary formulation of the problem of cor- 

related headways.     In the last sec^on of this paper is indicated a simple 

manner in which our results can be generalized to include variable gap 

criteria, 

R.   M.   Oliver [ 11]  has taken all of the results for a critical gap criteria 

of    >   T.   unified the notation and formulas,   and presented new results on the 

distributions of blocked and unblocked periods.    The emphasis of his paper 

is upon the gap and block-producing mechanism of the primary traffic  stream, 

with the waiting-time problem treated as a  special secondary process.      Be- 

cause of the importance of this approach,   several revisions in notation have 

been made in the present paper. 

-4- 
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Notation 

The following notation will be used:    Let f(t)   be any distribution density, 

which may possibly have discrete components (represented by impulses or 

Dirac-delta functions). 

Then the tail cumulative distribution function will be represented by F(t). 

F(t) = r f(x) dx 
(2) 

The truncated distribution density,   f(t;T)   is given by: 

f(t;T) = i(t) 0 < t  <   T 

T<t {3) 

Notice that the total area under   f(t;T)   is just   1 - F(T). 

We  shall use a tilde and the argument   s   to denote a LaPlace transform. 

x 

f(») =<[f(t)]   =     C    f(t)  e-st dt (4) 
0 

We shall use the convolution notation 

f^W.f^-^WfW n-2.  3.  ... (5) 

where the convolution operation     *   is defined as 

t 

f(t) * g(t)   =     J    f(x) g(t-x) dx 
0 

and for convenience we define 

f ^(t)  = f(t) 

(6) 

(7) 
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We shall use   v£   and    r/    to denote the mean and variance of the distribu- 

tion density   f(t);   where no confusion results we shall eliminate the sub- 

script on the moments of the mainstream headway distribution.  a(t).    If 

the mean is conditional upon the values of the random variable  being less 

than some value   T.    we add that value as an argument; I....       ^(T)   is the 

mean of the normalized truncated distribution    [l  - F(T)]-1  f(t;T). 

The Distribution of Initial Wait 

The measurement origin and the successive passage of automobiles 

through the mtersection presents a series of Bernoulli trials,   with proba- 

bilities   D(T),   A(T),   AW.   ....      of success on the   0th.    l8t
(   2

nd.   ... 

trials.    Hence the probability of the initial waiting time terminatilg at the 

n      trial a. e..  at time     Ta J     is just   [l - D{T)] [ A(T)] [ 1 - A(T)] ^ 

(n-1.   2.   ...)„  and probability  D(T)   of terminating at the origin. 

If we use  q(t)  for the distribute« density of initial wait we see that 

it has a discrete component at zero    since 

{w_-0) D   T 

If.   en the other hand    the waiting time terminates on the f.rst trial, 

the initial headway    t,     must have been less than   T.   and hence the 

(normalized) distribution of waiting time must be    d(t,T)    [ 1 - D(T)]-1 . 

Similarly,   if the waiting time terminates on the  nth  trial,   the head- 

ways   t0.   tj.   t2.   ...  tn   j   must all be less than   T.   and the normalized 

distribution of waiting time is 

(d^TKl-XXT)]-1}   *   f("-l)*(t;T)Cl.A(T)l^}(n>2, 

since   w-t0>t1+t2+....   tai . 
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If these normalized waiting time distributions are multiplied by the 

probabilities of success on the corresponding trials and summed,   we 

obtain: 

q(t)  - D(T>   (5(t)       -      cm, i , lit        ..:    .■.,'■   ii  '(•}   :    afT» IQ\ +     d(t;T) *    fl    +       £   aj*(t;T)l   A(T) 

where  ö(t)    is the Dirac-delta   function.    Thus equation (8) is the distribu- 

tion density of initial wait at the intersection until a gap at least as large 

as    T   appears in the main stream of traffic. 

By taking transforms,   and assuming series summability,   we find 

the more compact   expression: 

q(8)    =   D(T)    +     ^S = T) MT) 
l-a(a;T) ™ 

The advantage of this representation is that the moments  of   q(t)    are avail- 

able through differentiation of the transform. 

For example, 

lim     q(s)    =      C    q(t)dt      -    r>/-r>  +   O - D{T) )   A(T) . 
s — o+ Jo *   ' XTTJ =   1 

as it should. 

The mean initial wait is 

^ T ^ 
V   -     lim 
q 6 —0 + 

^^ j =    JtdCt)   dt    +   [l-D(T)]   [ACT)]'1   ft Mt) dt 
0 

(10) 

We may rewrite this in a more  suggestive form as 

-7- 
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v [I-D™ ["d^+-^p-(T)J . 

where   [1 -A(T)]/ACT)   i^ -an number of cars paealng after the first one 

given that at least one car passes before the wait is ended. 

The mean squared initial wait is 

(H) 

q ^"S m .^ [^^J^ $/*»* * ^rr [j". d,«*][j\Mt) dtJ 
0 

T 

^«Jf—ff^^t^'-j 

►ins Different Measurement Oripj, 

The choice ol .he ...rtin8.up den.ity,   „,„    ^^ ^ ^ ^^ 

In .he .lmple.t „..,   ^..^ t>me „.^ ^ ^^ ^^ ^ ^ 

P"Bed hy.   .nd   d(t) . M.,.    We slmU u>e the ^^^^ ^^^^   ^^   ^ ^ 

distribution to be: 

Ms)    = A(T) 
1  - MsjT) (12) 

which has a mean 
T 

I t    a(t)cit 

"b =     0—ÄHT ^JHT,   , (13) 

and a variance 
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f   tZ a(t) dt - 
=      Jo  1-,^       +      (l/^r r 'i - Jo   xm    + (rbr     • (14) 

■ 

Another important case is that in which the waiting time begins at a 

random moment relative to the main stream of traffic.    One can show (see, 

for example,   Ref. [6] ) that the correct starting-up density to use is: 

d(t)  =u(t) =    i/"1 A(t)      . (15) 

For starting to wait   "at random",   we shall use the special notation  w(t) 

for the initial waiting time distribution density.     We have 

w(s) = U(T) +    -(s;T) A(T) , (16) 
i- r(s;T) 

with the starting distributions defined through (15).    Expressions for the 

moments of  w(t)   can be developed completely in terms of moments of the 

headway distributions   but are not particularly revealing. 

Another  possibility occurs when the measurement origin is a fixed 

time     T   after the time at which the last previous car passed the inter- 

section.    In this case,   one should use 

d(t) = a(t + T)/A(T) t  >  0 (17) 

Finally,   it is sometimes a convenience to begin measurements at a 

fixed time     T   after the time at which some previous car passed the inter- 

section,   no measurements having been taken in the interim period.    It can 

be shown in this case [6]   that the starting-up density 

d(t) =a(tfT) (18) 
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has the double LaPlace transform 

% a(s   ) - ^(s   ) 
a(Sl|s2)=-  (19) 

(s2- s^ll -a(82)] 

Another possible starting-up distribution will be considered in the section 

on inter-gap spacings. 

Poisson Traffic 

The special case of Poisson traffic is of interest,  both theoretically 

and practically,   since headway distributions in freely flowing,   sparse 

traffic are often found to be close to exponential [l] .    Furthermore,   it 

turns out that for Poisson traffic all of the starting-up densities (15),   (17), 

and (19) are equivalent to assuming    d(t) = a(t) !    Thus,   for all of these 

measurement origins,   we may obtain the distribution of initial waiting 

time from (12),   and from the Poisson inter-event density: 

a(t) = K exp(-X.t) = XA(t) (t >  0) (20) 

The transform of the waiting-time distribution is: 

b(.)«wU). .VT   -sT (21) 
s + \ t        e 

which gives 

b(t)   =   w(t)    =       €"VT6(t) (22) 

+   Xe -^T 0 <   t   <    oo 

10- 



[1 + —n—J T< t<   oo 

+ Xe-3XT   [Mt-ZT) **{±ZT£  1 
I    ^^ 2"T  2T 5  * 5     • 

- xg-4^Tr X2(t-3T)2        V3(t-3T)3   I 
[        FT  + 3 |    ;     J 3T <   T <    oo 

Each successive term is added only in the range indicated on the right. 

This distribution was first obtained by Raff [U] and Tanner [13]. and 

later  obtained in different ways by other investigators.   [4]  and [7]. 

The continuous portion of (22) is shown in Figure 2 for   XT =   1.    1. 

and  2.    It consists of piecewise-continuou,   curves of length   T,   which are 

successwely constant,   straight-line,   parabolic,   cubic,   etc. 

The mean initial wait is given by (13) as: 

1,    XT 
"t'^-X-^e^-I . XT) 

x-1 X2T2 xV 
2 I    +     3 !     +   • • • T — 0 

(23) 

«x-1^ T_oo 

This formula was f.rst obtamed by Adams [l] .     Thus,   in Poisson trafflc 

the mean wait increases at least as the square of the critical gap.   T.   and 

increases at least Unearly with the mean traffic flow rate.   X.    For large 

values of  T.   the mean wait increases exponentially. 

-11. 



Continuous Portion of Probability Density of Initial 

Wait,   b(t) m w(t) in Poisson Traffic of Intensity \ 

XT = 0. 5 

VT = 1. 0 

\T = Z.O 

Pr t=0 ■ 0. 607 

Pr t=0 > 0.368 

Pr   t=0      = 0.135 

X^b = 0. 149 

\vh * 0.711 

\V.   = 4. 38' 



The variance of mean wait in Poisson traffic ii 

'£■«£-   ^2U2XT.1.2XTc^ 

^v-2 2\3T3 8\4T4 

ST- +   —4~i.— + -J T —0 

(24) 

«X-2e2XT 
T — 00 

and it increases at least as the cube of the critical gap.    T. 

Limiting Results 

The dependences on   T  just described turn out to be true for 

general traffic headway distributions. 

Assume that   a(t)   and  d(t)   have expansions about the origin of the 

form 

more 

a(t) =       2    a      4 
j=»0      J     J 

00 j 
d(t)    =      Z    d      * 

j=o   J  JT (25) 

From equations   (10) and (11),   we find,   after   some algebra 

^2 
lim      v    =   d-   -^-r + 

T _0       ^ 0  ^T 

and 

2 T llrn     r#.   " Zdn TT + 
T _0     q 0 TT 

Zd 
l ~,3 

l + 3dOaoJ-T7 3d2 + 6dla0+8d0al+12d0a02 

(26) 

T4 

■+ 41 

(27) 

6d1+H /IT
4
    r 

0dOaO-6dojTT+[12d2+60dlao-40dldo+70doal 

60d0
2a0+ I60d0a0

2 
■,T5 

FT 

In the  special case of starting to wait just after a car has passed 
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lim    v,   =3i   —-J- + 
T _0     b       0 2! 2a l+3ao]3T 3a2+14aiao+12ao |^r+- ']■ (28) 

2 T 
T -^0      b OTT 6al+14a0 TT 12a2+90a1a0+ 1 °-o3]^ (29) 

If measurements are begun at random relative to the main stream process. 

lim 
T —0 

1/     = w 
- 1 r   T. 

2 I 

and 

iim 
T —0 

2 
(T       = 
W 

vl 

[2? 

T3 ? T4 1 
(30) 

IT   T 
TT+[l4a0-6z/-   ]  TT+ [58a1+100a0-20a0i.-1J^T+  . . .1   (31) 

Thus,   in all cases,   the mean wait increases at least as the  square of T and 

the variance increases at least as the cube of T. 

We also note from (26) and (27) the curious result 

2 lim       or'' =     a \ v   Tl 
T-o     q q  J (32) 

where a ■    2/3    d     / 0 

=  3/4      d0  --0,   dj  ^ 0 

2 +n 
3+n d0  =0'   dl 0.   ...   d 

n-1 = 0.   d    /O n 

Relationships similar to (26) and (27) can also be for "stuttermg" distributions 

[6],   in which cars can arrive in geometrically distributed groups. 

For very large values of the critical gap.   T.   the wait increases without 

bound as A(T) vanishes.    Asymptotic limits can be found directly from (10) and 

(11).   giving. 
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lim        v    = v, + i/A'^lT)     c^ I/A"*/TI 

T^co   '9*^   +  f^ + ^A-W  ir2A-2(T)*^A-2(T) (34) 

In the limit.   (33) gives the intuitive expression for mean wait,   since 

A(T) is the average fraction of gaps which are large enough to permit entering 

or crossing the main stream. 

Notice that the coef^cient of variati on 

9        q    lV (35) 

approaches unity for laree valn^K  ^.f T -.I.        , Y xarge values  of T.   even though the initial wait distribu- 

tion is not exponential. 

The Distribution of Spacings Between Gaps 

Having derived the iaitUl waning Urne d.str.bution.   we are interested in 

finding the waiting Ume for  successwe cars wh.ch are lined up m a queue on 

the side road. 

xh. .^pus. sltUitio„ occur. when each car on the secondary road ^ 

.«., o, „oSs u« mii„ .tream of tra„lc when triggeted by the pa6aing ^ ^ 

c« o. the „a» etre.m; thit ...   even a . headway ^ ^ ^^ ^^ ^ ^ 

.„o„8ll t„ 2,   3,   4,   . . .  c„s to „.„ lhe intersectioni   ^ _ car ^ ^^^ 

Th.s situation mi8ht ari.4.   fot example,   wh,n vlaibiIit)r was ^^ ^ an 

Cuivaiea. distance oi ,... than ZT,   and .„ce.ssive oats waited „ntii a „gener- 

ation point o£ the ma.„ process to make cettatn that there was headway enough 

to enter.    This „odei ii also a very good approximation tor the case wh. 
iere 
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A(ZT)   « A(T),   as in heavy traffic* 

To obtain the distribution of wait from the beginning of one gap to the 

beginning of the next one.   we use (9).   with the starting-up distribution equal 

to the distribution of a headway which is a gap,   i. e. , 

d(t) . g(t) =  ^(t^-MtiT) 
(36) 

Using the special notation.   c(t).   for the inter-gap spacing,   we find its trans- 

form to be: 

c(s) -   a(s)^-l(s;T) 
1  - a*8;T) (37) 

This distr.bution density i. Zero m the interval   [0. T).   and thereafter exhibit, 

the piecewise continuous behaviour of b(t). 

The mean inter-gap spacing is given by 

v    - t/A'l(T) 

or,   in other words,   *.   is just the limits of   v    for large    T. 

(38) 

This is also the 

"intuitive" answer for the mean spacing between gaps.     The variance of the 

mter-gap spacing is given by 

T 

A'NT)   +   ZvKl(T)    f   ta(t)dt 
2        2 o-    + v 
c        c 

2 2 

where,   as before,    v  and   <r2    ar^ th« ^„o^       J are the mean and variance of 

headway distribution. 

(39) 

the mainstream 

* L'-cT^^nT.-^ liS'S sr.-s^.-s r.".:--r- - 

16- 



For the limiting cases of small and large values of critical gap,   T,   we 

obtain: 

Um     rc.  ^[l+V + t-^Ua^jT2*...] (40) 

2 2 2      2 lim     <r     = a     + (o-   - 1/ )ar,T + 
T —0 u a0i/    +  _1(o-Z-i/2)+a0

2 [cr2-2i/2]JT2+...(41) 

and 

lin^        v 
rr, c 
T — oo 

z/A'^T) (42) 

lim        cr2a^(<r2 + i/2)A'1{T)  +   i/;A*2(T) ä: i/2A" 2(T) 
T — oo      *" 

(43) 

We notice that the coefficient of variation also approaches unity in limit,   even 

though   c(t)   is not exponential. 

In the case of Poisson traffic. 

Tf(.) > 
-.   -X.T   -ST ^ e        e 

e^v   -VT -ST b + \e e 
(44) 

and we find: 

c(t)   =    0 

Ve-XT    [1] 

0 < t < T 

T <  t <   oo 

Xe-2XT [   X(t-2T) j 

+ Xe-3VT[   ^U-3T)2
3' 

.Ke-4XT[AVW] 

2T <   t <   oo 

3T <   t <   oo 

4T <   t < 

This distribution is  shown in Figure  3,   for    KT  =  1/2,    1 and 2.    One finds 

directly that: 
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\t 

Probability Density of Inter-Gap Spacing,   c(t) 

in Poisson Traffic of Intensity \ 

X-T =0.5 

XT ■ 1.0 

XT  =2.0 

Xi/    =   1. 649 c 

kv    a  Z. 718 c 

kv    ■ 7.389 
c 

X    c(t) 

Figure   3 

-18- 

; 



^c    "   '     e (45) 

] c  - X e - ^T e (46) 

The Counting Distribution of Gaps 

We are now in a position to describe the emptying of a queue which is 

waiting on the secondary road to enter or cross the main stream of traffic. 

The wait of the first vehicle    is a sample from the distribution  q(t) .   and if 

only one vehicle is allowed to enter the intersection per gap.   successive 

vehicles have additional delays which are samples from the inter-gap dis- 

tribution,   c(t) 

Thus,   the probability P^t)   that exactly   n  cars from the secondary 

road enter the intersection is just the counting distribution for the passage 

of gaps.     By a simple renewal argument. 

(47) P0(t)   =    J      q(x) dx  =    Q(t) 

P^t)  =   j   q(x) C(t-x)dx = q(t) * C(t) 

0 

P2(t)   =    q(t)  * C(t)  * c(t) 

pn(t) = q(t) • c(t) * cWi:l!*(t) 

or.   in terms of the transforms, 

P/s) =    Liabi 
0X   ' s (48) 
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^(8)   =    q(s) [1 -/(*>] 

p2(s). q(s) [i^asij rw 

(48) 

Pn(s)=q(s)     [i-=^L] CSl,)f-»       . 

We can find the transforms of the first and second moments directly as: 

oL[M(t)] q(s) 

8[l-c(s)] (49) 

Ji[D{t) +M2{t)] = aklliiiii)] 
B[1-C{B)]

Z (50) 

where M(t),   and  D(t)   ar e the mean and vaHance of the counting distribution. 

Thus,   after a choice of start.ng-up d.strxbut.on,   one has available the machinery 

to calculate the countxng d.stribut.on of gaps.     This is a long and tedious pro- 

cedure for practically any headway distribution,   however,   and we shall be 

content with indicating a few asymptotic results. 

First,   it xs known that in the limit of very large observation times,   the 

state probabmties (47) approach normaUty   [Z][6].    It U also not difficult to 

show (via (49) and (50) ),   that 

lim 
t   ^00 

M(t) 
c 2.v 

c + I 
C      J C 

(51) 

lim     D(t)- 
t     —00 v 

c ]^ +   constant (52) 
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so that,   in the extreme limit,   we find that the number of cars which are 

emptied from the secondary road is normally distributed,   with mean and 

variance 

Hm M(t)   Äi  1   A(T) .__. 
t—oo * (53) 

tlim      D(t)«^   ± A(T) ^ 

We may mterpret (53, as  saying that the flow rate of gaps past the intersec- 

tion is equal to the flow rate of cars m the main stream times the probability 

that a given headway is a large enough gap. 

Other Gap Criteria 

In some appUcations.   the simple criterion of "gap   >  T"   is not d es- 

criptive of actual behavior.    Suppose     inst^AH tv,af suppose,   instead that we partition the headways 

into two sets   G('go').   and C   ('don't go')     so th*t th~ *   «   •*• \     uii     go I,   so tnat the definition of waiting 

time in Equation (1) becomes 

w = 0       if     t0 e G 
(55) 

t0 eG. tjCG w = t0    if   tc 

w ''o"!   lf   t0'   h60'   '2«° 

n 
W 'iS    'i     ifto-  *!•   •••  »n«G.  t^eG 

* 
This section was not part of the original paper   [5] 
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A reappraisal of the development of the formulas for waiting-time 

distributions and their moments shows that this new gap criterion can be 

incorporated in our results by redefining all truncated distributions as: 

'(t;T)  =0 tcG (56) 

■ m tee 

and all the tail distributions as: 

F(T)    =       f f(t) dt 
(57) 

teG 

With these interpretations,   all of the formulas (8) - (16) and (36) - (39) 

are still valid. 

Furthermore,   it is possible to make the necessary modifications if 

the criterion of gap acceptance i, a probabilistic  one.     Suppose that a gap of 

size   t   is  "large  enough" with probability   a(t),   and is not "large enough" 

with probabilxty   1 - a(t).     Then these are just the probabilities of being in 

set   G   or   G,   respectively,   and the distribution which occur on the average 

are obtained by redefining 

f(t;T)    =    f(t)   [l-a(t)] (58) 

and 
oo 

F(T) =     J    Q(t) f(t)dt . (59) 

0 

With these interpretations,   all of the formulas (8)  - (16) and (36) -  (39) hold, 

with (12)  - (16) and (36) - (39) duplicating the results of Weiss and 

Maradulin   [14] . 
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